

G ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

TRANSFORMER INCIPIENT FAULT PREDICTION USING NAÏVE BAYES (NB) ALGORITHM

A. Kumar¹, Vidya H.A.², Thejashwi A.H.³ ¹Associate Professor, ²Professor, ³Professor ¹ Department of EEE, ¹BNMIT, Bengaluru, India

Abstract

Transformers is an important equipment in Electrical Power System. Failure of transformer can cause huge financial loss to industries. The ratio of key gases dissolved in the transformer oil can be used to predict Transformer incipient fault. Four types of incipient faults can be identified based on the key gas ratio, viz, Low Temperature Thermal fault, High Temperature Thermal fault, Low Intensity Discharge fault, and . A data set, with key gases concentration, is considered by using which prediction efficiency of fault classification is attempted using machine learning algorithms. In this work Naïve Bayes (NB) algorithm is used for prediction of transformer incipient fault more precisely.

Key words

Dissolved Gas Analysis (DGA), Transformer Incipient fault, IEC 60599, NB classifier.

1. Introduction

Transformers are most important equipment in the existence of power system. Failure of a transformer, can result in huge financial loss, depending on the duration of outage. Key gases are evolved in a transformer during its operation and can be used to predict incipient faults. It dissolves in insulation oil. These dissolved gases acts as an indicator of incipient fault. The various gases evolved in transformer during fault is exhibited in Table 1.

Key Gas	Chemical representation	Fault type
Hydrogen	H_2	Corona
Carbon monoxide and carbon dioxide	CO / CO ₂	Cellulose insulation breakdown
Methane and Ethane	$\mathrm{CH_4}/\mathrm{C_2H_6}$	Low temperature oil breakdown
Acetylene	C_2H_2	Arcing
Ethylene	C_2H_4	High temperature oil breakdown

Table 1: Transformer faults and key gases

The incipient faults can be predicted using these dissolved gases.

2. Dissolved Gas Analysis (DGA) and IEC 60599-2015

A reliable method to predict incipient faults in oil-filled transformer is DGA [1]. It is used as indicator to identify deteriorating insulation, partial discharge, over heating hot spots, and arcing [2]. Standards used for DGA are IEC60599-2015 and IEEE C57-104TM. An early detection can lead to an opportunity for suitable remedial action [3]. During fault, based on type of fault, a key gases are evolved in the transformer oil. The key gases found during DGA are carbon-di-oxide (CO₂), methane (CH₄), ethane (C₂H₆), hydrogen (H₂), acetylene (C₂H₂), carbon monoxide (CO), and ethylene (C₂H₄). Gas concentration in parts per million (ppm) can be found using gas chromatography Dornenberg, Rogers, Duval triangle and key gases method are used for **JETIR2205A66 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j518**

interpretation of transformer faults using DGA. The current work uses key gas ratio method based on IEC standard 60599-2015 for DGA and exhibited in table 2.

	IEC 60599	C_2H_2/C_2H_4	CH ₄ / H ₂	C_2H_4/C_2H_6	
	Ratios of characteristic gases <0.1 0.1 - 1 1-3 >3	0 1 1 2	1 0 2 2	0 0 1 2	
Case No.	Characteristic Fault				Typical examples
0	No fault	0	0	0	Normal ageing.
1	Partial discharges of low energy density	0 but not significant	1	0	Discharges in gas filled cavities resulting from incomplete impregnation or super saturation or cavitations or high humidity.
2	Partial discharges of low energy density	1	1	0	All above but leading to tracking or perforation of solid insulation.
3	Discharge of low energy	1-2	0	1-2	Continuous sparking in oil between bad connections of different potential. Breakdown of oil between solid materials.
4	Discharge of high energy	1	0	2	Discharges with power follow through. Arcing break down of oil between windings or coils, or between <u>coil</u> to earth. Selector breaking current.
5	Thermal fault of Low temperature <150°C	0	0	1	General insulated conductor overheating.
6	Thermal fault of Medium temperature range 150°C - 300°C	0	2	0	Local overheating of the core due to concentrations of flux. Increasing hot spot temperatures, varying from
7	Thermal fault of Medium temperature range 300°C - 700°C	0	2	1	small hot spots in core, overheating of copper due to eddy currents, bad contacts/joints (pyrolitic carbon
8	Thermal fault of high temperature > 700°C	0	2	2	formation) up to core and tank circulating currents

Table 2: DGA based fault prediction as per IEC 60599-2015 standard

NB Algorithm

Several classification algorithms are available for fault classification [4-11]. The current work is an attempt to use Naïve Bayes machine learning algorithm for fault classification. It is a Generative Classification Algorithm. The probability of an object belonging to certain class is calculated using Bayes theorem. In case of 'm' classes, to predict the class of a new object Bayes theorem with certain approximations are used 'm' times as shown in the equations 3.1 through 3.3.

3.

 $\begin{array}{lll} P(\ y_a|X\) = \ P(\ X|y_a) & (3.1) \\ P(\ y_b|X\) = \ P(\ X|y_b) & (3.2) \\ P(\ y_m|X\) = \ P(\ X|y_m) & (3.3) \end{array}$

The class 'i' with the highest probability value, $P(y_i|X)$ is assigned to the object 'X'.

4. NB algorithm simulation using MATLAB

Testing and experimentation was carried out with a data set of 200 samples. Gas concentration of C_2H_2 , CH_4 , C_2H_6 , C_2H_4 and H_2 were used as attributes. In the initial investigation Kernel NB and Gaussian NB algorithms were used and prediction accuracy was identified. The aim was to identify suitable model for transformer incipient fault prediction. In the next stage, investigation and analysis was done by considering the best algorithm selected from initial investigation. Experimentation was carried out using MATLAB version R2020a. Table 3 exhibits sample data with gas concentration in ppm.

	r											
SI.		Ga	Fault true									
No.	H_2	CH ₄	C_2H_2	C ₂ H ₄	C_2H_6	Faun type						
1	2238	826	537988	335279	4008	High intensity discharge						
2	2373	817	669150	447061	4284	High intensity discharge						
3	2394	754	673175	360327	4049	High intensity discharge						
4	6729	323	2	45353	2323	Low intensity discharge						
5	10000	800	40	9	222	Low intensity discharge						
6	9900	780	35	10	150	Low intensity discharge						
7	10000	769	36	11	180	Low intensity discharge						
8	30	80	3	220	675	Thermal fault						
9	4000	6076	2	23232	4544	Thermal fault						
10	100	200	1212	3222	188	No Fault						

Table 3	Sample	data	set.
---------	--------	------	------

5. Results and Discussion

5.1. **NB** Algorithm Selection

Gaussian and Kernel NB algorithms were considered for analysis. Prediction accuracy and training time were selected as the parameters for comparison to select between the two algorithms. The results are tabulated in Table 4 and represented in figure 1a and 1b.

Table 4: Prediction accuracy for different ND algorithm							
Algorithm	Prediction	Training time in					
Algorithm	Accuracy	sec					
Gaussian NB	95.5%	6.93					
Kernel NB	98.5%	7.18					

Table 4: Prediction accur	acy for different NB algorithm
---------------------------	--------------------------------

The results obtained depicted that Kernel NB algorithm has a better prediction efficiency of 98.5% over Gaussian NB algorithm with prediction efficiency of 95.5%. Although the training time was slightly higher in case of Kernel NB algorithm, the difference was 3.6%. Hence Kernel NB algorithm was selected for future analysis. The confusion matrix of Kernel NB algorithm is shown in figure 2.

Figure 2: Confusion matrix for Kernel NB Algorithm

The accuracy of prediction is indicated by confusion matrix. It represents pictorially true class with respect to predicted class. It can be seen from the confusion matrix that the selected model has one incorrect prediction in the "High Intensity Discharge" and 2 incorrect prediction in the "Thermal Fault" case.

5.2. Transformer Incipient Fault Prediction

By using Kernel Naïve Bayes algorithm, prediction accuracy for all the classes i.e. No fault, Thermal fault, Low intensity fault and High intensity fault, was identified using Region of Conversion (ROC). ROC provides the prediction accuracy as a plot of true positive predictions v/s false positive predictions. Accuracy is indicated by the area under curve (AUC). If the AUC is 0.98 it indicates 98% accuracy of prediction. The ROC curve for the four classes mentioned above are shown in figure 3 to figure 7.

Figure 5: AUC = 1.0 (Fault type: Low intensity discharge)

📣 Classifica	tion Learner	- ROC	Curve														_	ć) ×
CLASSIF	FICATION LEAF	RNER	VIEW														ħ i \$ \$) ¢	6 ? 🖲
New Session ▼	Feature Selection	PCA	Misclassification Costs	Gaussian Naive Baye	Kernel Naive Bayes	All Naive Bayes	Optimizal Naive Ba	ble yes	(O) Advanced	Use Parallel) Train	Scatter Plot	Confusion Matrix	ROC Curve	Parallel Coordinates Plot	Min Classifica Error Plot	ation EXPO	ORT	
FILE	FEATURE	s	OPTIONS			MODEL TYPE				TRAIN	ING			P	LOTS				<u> </u>
Data Brows	er				Scatter Plot	× Confusio	on Matrix	×RC	C Curve 🛛 🕅										
History 1.1 Naiv Last change: 1.2 Naiv	ve Bayes Gaussian Na ve Bayes	aive Ba	Accura yes Accura	ry: 95.5% 3/3 features ry: 98.5%			1			Mode	1.2	Ê,	. (= (*) €	Q (;)		Plot Positive High int	eclass ensity discha	rge	~
Last change:	Kernel Naive	e Baye	5	3/3 features		(D.8 -	(0.00,	0.97)		False True p	positive positive r	rate: 0.5 ate: 0.967	74		Negativ Low inte	e classes ensity dischar	ge	
Model 1.2:	Current Model Model 1.2: Trained			^		rate	0.6									Thermal fault			
Results Accuracy Total miscl Prediction : Training tin	assification c speed ne	9: cost 3 ~ 6.	8.5% 1800 obs/sec 6651 sec			True positive	0.4			AUC =	0.98								
Model Typ Preset: Ker Distribution Distribution Kernel type Support: Un	ee nel Naive Ba name for nu name for ca c Gaussian nbounded	ayes imeric p itegoric	predictors: Kernel al predictors: MVM	N		(0 -				•	ROC cu Area un Current	rve der curve (/ classifier	NUC)		What is	the ROC cu	rve?	
Optimizer Hyperparar	Options meter options	s disabl	led	*			(0	0.2 F	0.4 alse pos	0.6 itive ra	ate).8	1					
Data set:	DATA_DGA	R_STU	DIO Observation	ns: 219 Size	e: 8 kB Predict	ors: 3 Respo	onse: Faul	ttype i	Response Cla	asses: 4				Validatio	n: 5-fold Cross-V	alidation			
# >	O Type h	ere to	search		0	¤i	16	Ş) 🤇	6	9 -	1			1 25°	c ^ ¹⁰ 8/):14 A /6/202	M 11

Figure 6: AUC = 0.98 (Fault type: High intensity discharge)

Figure 7: AUC = 0.99 (Fault type: No-fault)

The observations are exhibited in table 5

Sl. No.	Type of incipient fault	AUC	Prediction accuracy
1	Thermal fault	0.96	96 %
2	Low intensity discharge fault	1.00	100%
3	High intensity discharge fault	0.98	98%
4	No-fault	0.99	99%

6. Conclusion

In this paper an attempt has been made to predict the incipient faults of a transformer using NB algorithm. In this regard, number of data is recorded with the experimental set up, out of which percentage of data are used for testing purpose. From the study / results and discussions, the following specific conclusions are drawn:

- Prediction accuracy of Kernel NB algorithm and Gaussian NB algorithm is found to be 98.5% and 95.5% respectively.
- It is observed that, Kernel NB algorithm gave better and consistent prediction results compared to the Gaussian NB algorithm.
- Further, by the application of NB algorithm based on the key gas ratios of a transformer, prediction of low intensity discharge fault is found to be 100% accuracy during the thermal fault with accuracy 96%, High Intensity Fault 98% and 99% for No fault Conditions.

7. **References**

- 1. M.Wang, A.J.Vandermaar and K.D.Srivastava, "Review of condition assessment of power transformers in service", vol 18, no.6, IEEE Electrical Insulation Magazine, Nov/Dec 2002.
- 2. *M N Bandyopadhyay, "Condition monitoring for Power transformer", International conference on condition monitoring and diagnosis, 2008.*
- 3. Ahmed Abu-Siada, Sdood Hmood, "Fuzzy logic approach for power transformer asset management based on dissolved gas in oil analysis", Chemical Engineering Transactions, Vol 33, 2013. Pp: 997-1002.
- 4. S. Jaysri, Priyadharshini, J., Subathra P., and Dr. (Col.) Kumar P. N., "Analysis and Performance of Collaborative Filtering and Classification Algorithms", International Journal of Applied Engineering Research, vol. 10, pp. 24529-24540, 2015.
- 5. S. Pandey, Dr. Supriya M., and Shrivastava, A., "Data Classification Using Machine Learning Approach", in 3rd International Symposium on Intelligent Systems Technologies and Applications (ISTA'17), Manipal University, Karnataka, 2017
- 6. V. Sridevi, Reddy, M. Ramasubba, Srinivasan, K., Radhakrishnan, K., Rathore, C., and Nayak, D. S., "Improved Patient-Independent System for Detection of Electrical Onset of Seizures.", J Clin Neurophysiol, vol. 36, no. 1, pp. 14-24, 2019.
- 7. L. K. Devi, Subathra P., Dr. (Col.) Kumar P. N., V., D. S. Ravi, and B.K., P., "Tweet Sentiment Classification Using an Ensemble of Machine Learning Supervised Classifiers Employing Statistical Feature Selection Methods", Advances in Intelligent Systems and Computing, vol. 415. Springer Verlag, pp. 1-13, 2015.
- 8. P. Krishnakumar, K. Ramesh Kumar, and Dr. K. I. Ramachandran, "Machine learning based tool condition classification using acoustic emission and vibration data in high speed milling process using wavelet features", Intelligent Decision Technologies, vol. 12, pp. 1-18, 2018.
- 9. A. Kumar, Dr. Vidya H A, "Application of k-Nearest Neighbor (kNN) machine algorithm for transformer fault classification", International Journal of Advanced Science and Technology, vol. 29, No. 6, pp. 8441-8448, 2020.
- 10. A. Kumar, Dr. Vidya H A, "Transformer Incipient Fault Prediction using Support Vector Machine (SVM)", Journal of University of Shanghai for Science and Technology (JUSST), Vol 23, Issue 5, pp 737-744, 2021.
- 11. Lekshmi R Chandran, Dr. Manjula G Nair, Dr. Ilango Karuppasamy, G.S.Ajith Babu, "A Review of Status Monitoring Techniques of Transformer and Case Study on Loss of Life Calculation of Distribution Transformer", Materials Today: Proceddings, Vol 46, Part 10, pp. 4659 4666, 2021

